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1. Concepts and Definitions 

 

Vector 

 

A “vector” is a set of scalar values, or “elements”, placed in a particular order, and then 

displayed either as a column of values, or a row of values. The number of elements in the 

vector gives us the vector’s “dimension”. 

 

So, the vector  83621 v  is a row vector with 4 elements – it is a (1 4) vector, 

because it has 1 row with 4 elements. We can also think of these elements as being 

located in “column” positions, so the vector essentially has one row and 4 columns. 

 

Similarly, the vector 
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2v  is a column vector with 4 elements – it is a (4 1) vector, 

because it has 1 column with 4 elements. We can think of these elements as being located 

in “row” positions, so the vector essentially has one column and 4 rows. 

 

Matrix 

 

A “matrix” is rectangular array of values, or “elements”, obtained by taking several 

column vectors (of the same dimension) and placing them side-by-side in a specific 

order. Alternatively, we can think of a matrix as being formed by taking several row 

vectors (of the same dimension) and placing them one above the other, in a particular 

order. 

 

For example, if we take the vectors  
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3v  we can form the matrix 
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
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1V . If we place the vectors side-by-side in the opposite order, we get a  

 

different matrix, of course, namely: 
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Dimension of a Matrix 

 

The “dimension” of a matrix is the number of rows and the number of columns. If there 

are “m” rows and “n” columns, the dimension of the matrix is (m   n). You can see how 

the way in which the dimension of a vector was defined above is just a special case of 

this concept. 

 

For example, the matrix 
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
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
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A  is a (3   3) matrix, while the dimension of the 

matrix 
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D  is (3   2). 

 

 

Square Matrix 

 

A matrix is “square” if it has the same number of rows as columns. 

 

The matrix 
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A  is square, as it has 3 rows and 3 columns. The matrices 
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E  are not square – they are “rectangular”. 
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Rectangular Matrix 

 

A rectangular matrix is one whose number of columns is different from its number of 

rows. 

The matrices 
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

















928

801

E  are “rectangular”. The matrix D has 3 

rows and 2 columns – it is (3 2). The matrix E has 2 rows and 3 columns – it is (2 3). 

 

Leading Diagonal 

 

If the matrix is square, the “leading diagonal” is the string of elements from the top left 

corner of the matrix to the bottom right corner. 

 

If 
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A , its leading diagonal contains the elements (7, 4, 9). 

 

Diagonal Matrix 

 

A square matrix is said to be “diagonal” if the only non-zero elements in the matrix occur 

along the leading diagonal. 

 

The matrix 
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C  is a diagonal matrix. 

 

 

Scalar Matrix 

 

A square matrix is said to be “scalar” if it is diagonal, and all of the elements of its 

leading diagonal are the same. 

 

The matrix 
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
















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C  is not. 

 

 

Identity Matrix 
 

An “identity” matrix is one which is scalar, with the value “1” for each element on the 

leading diagonal. (Because this matrix is scalar, it is also a square and diagonal matrix.)  
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The matrix   
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I  is an identity matrix. (We might also name it I3 to indicate  

that it is a (3 3) identity matrix.) 

 

An identity matrix serves the same purpose as the number “1” for scalars – if we pre-

multiply or post-multiply a matrix by the identity matrix (of the right dimensions), the 

original matrix is unchanged. 

 

So, if   
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D , then  ID = D = DI. 

 

Null Matrix 
 

A “null matrix” is one which has the value zero for all of its elements. The matrices 
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N  are both null matrices. 

 

A null matrix serves the same purpose as the number “0” for scalars – if we pre-multiply 

or post-multiply a matrix by the identity matrix (of the right dimensions), the result is a 

null matrix. 

 

So, if   
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D , then ZD = N. [Note that Z is (3 3), and D  

 

is (3 2), so ZD must be (3 2).] 

 

Trace 

 

The “trace” of a square matrix is the sum of the elements on its leading diagonal. 

 

For example, if 
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A , then trace(A) = (7 + 4 + 9) = 20. 

 

 



 5 

Transpose 
 

The “transpose” of a matrix is obtained by exchanging all of the rows for all of the 

columns. That is, the first row becomes the first column; the second row becomes the 

second column; and so on.  

 

If  
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
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'D . Sometimes we write D
T
  

 

rather than 'D  to denote the transpose of a matrix. Note that if the original matrix is an 

(m n) matrix, then its transpose will be an (n m). 

 

Recall that a vector is just a special type of matrix – a matrix with either just one row, or 

just one column. So, when we transpose a row vector we just get a column vector with 

the elements in the same order; and when we transpose a column vector we just get a row 

vector, with the order of the elements unaltered. 

 

For example, when we transpose the (1 4) row vector,  83621 v , we get  a 

column vector which is (4 1): 























8

3

6

2

'1v . 

 

 Symmetric Matrix 

 

A square matrix is “symmetric” if it is equal to its own transpose – that is, transposing the 

rows and columns of the matrix leaves it unchanged. In other words, as we look at 

elements above and below the leading diagonal, we see the same values in corresponding 

positions – the (i, j)’th. element equals the (j , i)th. element, for all ji  . 

 

For example, let 
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F . Here the (1 , 3) element and the (3 , 1) element are both 

6, etc. Note that FF ' , so F  is symmetric. 

 

Linear Dependency 

 

Two vectors (and hence two rows, or two columns of a matrix) are “linearly 

independent” if one vector cannot be written as a multiple of the other. So, for example, 

the vectors x1 = (1 , 3 , 4 , 6) and x2 = (5 , 4 , 1 , 8) are linearly independent, but the 
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vectors x3 = (1 , 2 , 4 , 8) and x4 = (2 , 4 , 8, 16) are “linearly dependent”, because x4 = 

2x3. 

 

More generally, a collection of (say) n vectors is linearly independent if no one of the 

vectors can be written as a linear combination (weighted sum) of the remaining (n - 1) 

vectors. Consider the vectors x1 and x2 above, together with the vector x5 = (4 , 1 , -3 , 2). 

These three vectors are not linearly independent, because x5 = x2 – x1. 

 

Rank of a Matrix 

 

The “rank” of a matrix is the (smaller of the) number of linearly independent rows or 

columns in the matrix. 

 

For example, the matrix 
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
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D  has a rank of “2”. It has 2 columns, and the first  

 

column is not a multiple of the second column. The columns are linearly independent. It 

has 3 rows – these three rows make up a group of 3 linearly independent vectors, but by 

convention we define “rank” in terms of the smaller of the number of rows and columns. 

So this matrix has “full rank”. 

 

On the other hand, the matrix 
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






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1046
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G  has a rank of “2”, because the third  

 

 

column is the sum of the first two columns. In this case the matrix has “less than full 

rank”, because potentially it could have had a rank of “3”, but the one linear dependency 

reduces the rank below this potential value. 

 

Determinant of a Matrix 

 

The determinant of a (square) matrix is a particular polynomial in the elements of the 

matrix, and is a scalar quantity. We usually denote the determinant of a matrix A by |A|, 

or det.(A).  

 

The determinant of a scalar is just the scalar itself. 

 

The determinant of a (2 2) matrix is obtained as follows: 

 

)()( 12212211

2221

1211
aaaa

aa

aa
 . 

 



 7 

If the matrix is (3 3), then 

 

 

 

 

which can then be expanded out completely, and we see that it is just a polynomial in the 

aij elements. 

 

Principal Minor Matrices 

 

Let A be an (n  n) matrix. Then the “principal minor matrices” of A are the sub-matrices 

formed by deleting the last (n - 1) rows and columns (which leaves only first diagonal 

element); then deleting the last (n - 2) rows and columns (which leaves the leading (2  

2) block of A); then deleting the last (n - 3) rows and columns; etc.  

 

If  



















985

346
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A , its first principal minor matrix is A(1) = 7; the second principal minor  

 

matrix is 









46

37
)2(A ; and the third is just A itself. 

 

Note: The term “principal minor” is often used as an abbreviation for “determinant of the 

principal minor matrix”, so you need to be careful. 

 

Inverse Matrix 

 

Suppose that we have a square matrix, A. If we can find a matrix B, with the same 

dimension as A, such that AB = BA = I (an identity matrix), then B is called the “inverse 

matrix” for A, and we denote it as B = A
-1

. 

 

Clearly, the inverse matrix corresponds to the reciprocal when we are dealing with scalar 

numbers. Note, however, that many square matrices do not have an inverse.  

 

Singular Matrix 

 

A square matrix that does not have an inverse is said to be a “singular matrix”. On the 

other hand, if the inverse matrix does exist, the matrix is said to be “non-singular”. 

 

)()()( 223132211323313311122332332211

3231

2221

13

3331

2311
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3332

2322

11

333231

232221

131211

aaaaaaaaaaaaaaa
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a
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a
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a
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


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For example, every null matrix is singular. Similarly every identity matrix is non-

singular, and equal to its own inverse (just as 1/1 = 1 in the case of scalars).
 

 

Computing an Inverse Matrix 

 

You will not have to construct inverse matrices by hand, except in very simple cases – a 

computer can be used instead. It is worth knowing how to obtain the inverse of a (non-

singular) matrix when the matrix is just (2  2). In this case we first obtain the 

determinant of the matrix. We then interchange the 2 elements on the leading diagonal of 

the matrix, and change the signs of the 2 off-diagonal elements. Finally, we divide this 

transformed matrix by the determinant. Of course, this can only be done if the 

determinant is non-zero! So, a necessary (but not sufficient) condition for a matrix to be 

non-singular is that its determinant is non-zero. 

 

To illustrate these calculations, consider the matrix  

 















21

14
R . Its determinant is Δ = [(4)(-2) – (1)(-1)] = [-8 + 1} = -7. So, the inverse of  

 

R is the matrix 
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









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




















7/47/1

7/17/2

41

1211R . You can check that 







 

10

01
11 RRRR . 

 

Definiteness of a Matrix 
 

Suppose that A is any square (n  n) matrix. The A is “positive definite” if the (scalar) quadratic 

form, Axx'  > 0, for all non-zero (n  1) vectors, x; A is “positive semi-definite” if the (scalar) 

quadratic form, Axx'   0, for all non-zero (n  1) vectors, x; A is “negative definite” if the 

(scalar) quadratic form, Axx'  < 0, for all non-zero (n  1) vectors, x; and A is “negative semi-

definite” if the (scalar) quadratic form, Axx'   0, for all non-zero (n  1) vectors, x. If the sign 

of Axx'  varies with the choice of x, then A is said to be “indefinite”. 

 

For example, let 









20

04
A . Then  

 

    024
2

4
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
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
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



































 xx

x

x
xx

x

x
xx

x

x

x

x
Axx , unless  

 

both x1 and x2 are zero. So, A is positive definite in this case. 
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Idempotent Matrix 

 

Suppose that we have a square and symmetric matrix, Q, which has the property that Q
2
 = 

Q. Because Q is symmetric, this means that QQQQQQQQ  2'' . Any matrix with 

this property is called an “idempotent matrix”.  

 

Clearly, the identity matrix, and the null matrix are idempotent. This corresponds with the 

fact that the only two idempotent scalar numbers are unity and zero. However, other 

matrices can also be idempotent. 

 

Let X be an (T k) matrix, with T > k, and such that the square, (k k) matrix )'( XX has 

an inverse (i.e., it is non-singular). Let ')'( 1 XXXXP  . Note that P is an (T T) 

matrix, so it is square; and also note that  

 

PXXXXXXXXXXXXXXXXP   ')'('])''[(']')'[()''(]'')'([' 1111 . 

That is, P is symmetric. Now, observe that 

 

PXXXX

XXXIXXXXXXXXXXXXXXXXXPP









')'(

')'(')'('])''[(')'(]'')'(['

1

11111

 

and so P is idempotent. You can also check that the matrix )( PIM T   is another 

example of an idempotent matrix. 

 

2. Some Basic Matrix Results 
 

Let A be a square (n  n) matrix. Then: 

 

1. Let X be an (m  n) matrix with full rank. Then (XAX’) is positive definite if A is 

positive definite. 
 

2. If A is non-singular (that is, it has an inverse) then it is either positive definite, or 

negative definite, and its determinant is non-zero. 
 

3. If A is positive semi-definite or negative semi-definite, then its determinant is zero, and it 

is singular (it does not have an inverse). 

 

4. If A is positive definite then the determinant of A is positive. 

 

5. If A is positive (semi-) definite then all of the leading diagonal elements of A are positive 

(non-negative). 

 

6. If A is negative (semi-) definite then all of the leading diagonal elements of A are negative 

(non-positive). 

 

7. A is positive definite if and only if the determinants of all of its principal minor matrices 

are positive. 
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8. A is negative definite if and only if the determinants of the principal minor matrices of 

order k have sign (-1)
k
, k = 1, 2, ....., n. (That is, - , +,  - , +,...........) 

 

9. Suppose that B is also (n  n), and that both A and B are non-singular. Then the 

definiteness of (A - B)
-1

 is the same as the definiteness of (B 
-1

 - A 
-1

). 

 

10. If A is either positive definite or negative definite, then rank(A) = n. 

 

11. If A is positive semi-definite or negative semi-definite, then rank(A) = r < n. 

 

12. If A is idempotent then it is positive semi-definite. 

13. If A is idempotent then rank(A) = trace(A), where the trace is the sum of the leading 

diagonal elements. 

 

14. If C is an (m  n) matrix, then the rank of C cannot exceed min.(m , n). 

 

15. If A is positive semi-definite or negative semi-definite, then rank(A) = r < n, and it has 

“r” non-zero eigenvalues 

 

16. If A is either positive definite or negative definite then all of its eigenvalues are non-zero. 

 

17. Suppose that A and B are both (n  n) matrices. Then trace(A + B) = trace(A) + trace( B). 

 

18.  Suppose that A and B are both (n  n) matrices. Then )''()'( BABA  . 

 

19. Suppose that A is a non-singular (n  n) matrix, then 
11 )'()'(   AA . 

 

20. Suppose that A and B have dimensions such that AB is defined. Then )''()'( ABAB  . 

 

21. Suppose that A and B are non-singular (n  n) matrices such that both AB and BA are 

defined. Then )()( 111   ABAB . 

 

22. If D is a square diagonal matrix which is non-singular, then D
-1

 is also diagonal, and the 

elements of the leading diagonal are the reciprocals of those on the diagonal of D itself. 

 

 

 

 

 

 


